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ABSTRACT

A computationally efficient scheme for multiple-source location

estidtition, based on the Estimate-Maximize (EM) algorithm L1, is presented.

The propusea scheme is optimal in the sense that it converges iteratively to

toae exact Paixiruwii LiKelihood estimate of all source location parameters

simultdneously. Versions of the algorithm that incorporate the estimation of

te uliKouwn amplitude attenuations and the estimation of the unknown signal

wavefurms are also presented.
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I. INTRUDULTION

Tiue locdtion of a radiating point-source can be determined by

uuservdtion of its signal at an array of spatially distributed sensors. The

uptiril, iaximur,i Likelihood (ML), estimate of the source location parameters

(i.e. bearing ano range) is achieved by maximizing the array beamformer output

LZi or, alternatively, by cross-correlating the various sensor outputs and

obtain the ML estimates by maximizing a weighted sum of the cross-correlation

respunses with respect to a pair of bearing and range parameters [3].

The presence of several signal sources drastically complicates the

esi,,idtio, process. To obtain the ML estimate of all source location

param,,eters jointly, we have to maximize a significantly more complicated

iighly ioun-linear tunction with respect to K pairs of unknown location

pdraweters, where K is the assumed number of signal sources. Of course, brute

force cdn dlways be used to solve the problem, evaluating the objective

function on coarse grid to roughly locate the global maximum, and then

applying the Gauss method or Newton-Raphson or some other iterative

gradient-search algorithm. However, when applied to the problem in hand,

tnese metrhuds tend to be very complex and computationally time consuming.

Consequently, approximations to the ML solution and various ad hoc

scnemes fur multiple source localization have been proposed in recent

literdture (e.g., L4J - L201); however, most of the proposed suboptimal

locdliZdtioUF schemes simplify processor structure and computations at the

sdcrifice of system resolution and accuracy.

Iii this report, we develop an iterative schpme for multipie source

location estimation based on the Estimate-Maximize (EM) algorithm. However,

unlike the orute force gradient-search iterative algorithms, the proposed

scheme makes an essential use of the stochastic system under consideration.



The heuristic idea is to decompose the sum of vector signals observed at the

sensor outputs into its components, and then apply a conventional beamformer

instrumentation to each signal component to obtain the bearing and range

ebtiinate of tne corresponding source. The algorithm iterates, using the

resulting parameter estimates to better decompose the observed data on the

next iteration cycle and thus to improve the next parameter estimates. This

c(oiputtionally attractive algorithm is shown to be optimal in the sense that

it cunveryes to the exact PL estimate of all source location parameters

simul tareously.

Ttie urydnization of the report is as follows: In Section II we

re-derive the EM algorithm following the considerations in [1], and then we

specialize to the Linear-Gaussian case. In Section III we apply the algorithm

to the rultiple source location estimation.

II. MAXIMUm LIKELIHUOD ESTIMATION AND THE ESTIMATE-MAXIMIZE ALGORITHM

Let Y be a vector random variables possessing the probability

delsity " _ , where (5) is an open subset of the K-dimensional
'A

Euclidean space. The ML estimate _A44 of 6, given an observed 4, is

uutdinea by maximizing the log-likelihood function

If the vector _1 contains several unknowns, such as in the multiple

source location problem, and since (0J(yiJj g is generally a highly

nun-linear function of 6 , the maximization required in (1) tends to be very

cumpl ex.
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Suppose the data vector Y can be viewed as being 'incomplete', and we

can specify some "complete' data .'that is related to Y by

H(fX") Y (2)

where HN) is a non-invertable (many-to-one) transformation. In the multiple

source location problem, the "complete" data Ycould be the observation of the

various source signals separately, where the "incomplete" (observed) data Y is

the sumu of the signal contributions from the various sources. As pointed out

before, the Y model may be complicated to work on directly, in which case

reference to the Xmodel might be very useful.

For all "complete" data realizations ) such that -((') :-

_ : Yj .' (3)

wnere ?) x,, is the probability density of_) , and //y. ( ) is the

conditional probability density of Y given that Y:. . Taking the logarithm

on both sides of (3), we obtain

TaKing the conditional expectation given Y: ' for a parameter value & #

(i.e., multiplyin both sides of (4) byf IV.. )and integrating with

respect to X over we obtan n

-6; &l~y/,~ (5))Y:1;

obtain0
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where we note that for a fixed 1 , the left hand side of (5) is a constant and

hence it is unaffected by the conditional expectation operation. Define for

convenience

With these definitions, (5) reads

(& y Yj V) = 9%.) ?-9,' (8)

Using the Jensen's inequality, it can easily be verified that

9(&~'~v~ )/.I,)*) Hence

The relation in (9) formi the basis to the EM algorithm.. The algorithm

starts with an initial guess 01 and let be defined inductively by

Thie Jensen 's inequality asserts that for any two probability

oensi ties((!)ancl ')def ined over J



Since 90010) is the value of 6 that maximizes 9(0', ) , then

accoruing to (9) each iteration of the algorithm increases the likelihood.

Hence, under the usual regularity conditions, the algorithm converges to the

waxiiun, likelihood estimate, i.e. A '4 . The rate of convergence of

the algorithm is exponential (see El]), depending on the fraction of the

covariance of the 'complete" data that can be predicted using the observed

("incomplete') data. If that fraction is small, the rate of convergence tends

to be slow, in which case one could use standard numerical methods to

dccelerate the algorithm.

It is important to observe that the EM algorithm is not uniquely

defined. The transformation H(.) relating Y to Y can be any

noi-invertable transformation. Obviously, there are many possible "complete"

data specifications that will generate the observed data. Thus, the EM

ilqurithn can be implemented in many possible ways. The final outcome, which

is the ML estimate, is completely unaffected by the way in which H is

specified (i.e. the choice of "complete" data); howevei, the choice of Hmay

critically affect the complexity and rate of convergence of the algorithm, and

unfortunate choice of H may yield a completely useless algorithm. Hence,

given a parameter estimation model, the practically important question that is

left open is how to find the computationally most efficient implementation of

the algorithm.

The Linear-Gaussian Case

Suppose that 1-)(Y, where / is a men matrix (m -1), and Ypossesses

tne following multivariate Gaussian probability density

(' (det t) exe I



II

wIre >=f if Y is real-valued, ):2 if Y is complex-valued, and the

superscript P denotes the conjugate-transpose operator. We shall refer to

this case as the Linear-Gaussian case. Taking the logarithm of (11), we

obtain

-/ -/ -

wtire trL J stands for the trace of the bracketed matrix. Substituting (12)

into (6), we obtain

Usin9 well-known results from linear estimtion ([23), Chapter 4), we obtain

2 2

(12)

1, ) the I m m i dei by

wnretr Jstnd fr hetrceofth bacetd atix Sbsittig 12
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Substituting (14) and (15) into (13), the function 9(,f/ ')required for

the Em algorithm is given in a closed form. We note that 9( , ')
aid PVjlX % )have the sae dependence on R. Maximizing 9 (t, .') with

respect to k- is the same as maximizing f,/', 'y %) with respect to 0

Helce, the EK algorithn. requires the I. solution in the Ymodel which might be

sigiificantly easier to obtain than the direct ML solution in the Y model.

If k'(.)= a constant matrix, 9(., s?') assumes the simplified form

w?,ere a(t') accounts for all terms that are independent of,. Substituting

(17) into (10), the Estimate (conditional expection) step and Maximize step of

ite alorihn are given by:

E-step: Compute

N-step:

III. ARRAY PROCESSING VIA THE EN ALGORITHM

The basic system of interest consists of K spatially distributed signal

sources and an array of J. spatially distributeo sensors as illustrated in

Figure 1. Assuming perfect propogation conditions in the medium between

sources anu receivers, the actual waveform observed at the m th sensor output

is given by

(20

/ : --. ), / o<20
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where S£t)is the kth source signal, A1,4l)is the additive noise, 71m Is

the travel time of the signal wavefront from the kth source to the mth

seiisur, and A' are the amplitude attenuations.

Infon~latio, concerning the various source location parameters can be

extracted by measuring the various , . In the passive case, one can only

measure the travel time differences, obtainable by selecting one sensor as a

reference ano compbring its output with that of every other sensor. If we let

senso! M to be the reference and set = , then r;., measures the travel

time difference of the kth signal wavefront to the (wm ) sensor pair.

To simplify the exposition, suppose that the various signal sources are

relatively far-field so that the observed signal wavefronts are essentially

planar across the array. If we further suppose that the array sensors are

co-linear, trien

T (21)

where , is the spacing between sensors wandl,cC is the velocity of
prupogation ir, the medium, and Y is the angle of incident of the k th signal

wavetront witr respect to the array baseline.

In this setting, the estimation problem can be stated as follows: Given

the ouserveo data fti,,.j)3 " , find the M estimate of Y, ,..

We shall find it convenient to work with the parameters @ .

Since M estimation conmutes over non-linear transformation, we can first

estimate the Fj and then translate to the .

Assuming that the Sk ( ) are perfectly known to the observer, and

that tke 1,, /1 ) are realizations from uncorrelated zero-mean spectrally

white Gaussian processes, the log-likelihood function is given by

Ir Y C - / - w I# 4f (22)
WW f W

T& lm lm
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whee r t4/ , 41s the spectral le vel Of Kw t,(), ET", Ts I s the

cOservation interVdl, and C! is a normalizing constant. The result in (22) is

a straightforward multi-channel extension of the known (deterministic) signal

in white Gaussian noise problem ([241, Chapter 4). Thiis, the Mt. estimate is

the solution to the following problem:

T;

Mo f- V W~ - I k,1 1- "e t (23)

Ignoring terms that are independent of 6 , (23) reduces to

- ,f~d~kY,,/)#4~ ~(24)

JJ (7,

In many situations of practical interest, the number of signial sources

is also an unknown parameter to be estimated, in which case several criteria

to determine k:, based on the ML estimate of the t9A ', , are presented in

(L2OJ - L2~j). Thus, to obtain the MI. estimate of the 6Oj) 1A jointly with the

estimate of the number of signal sources, we have to solve a non-linear
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optimization problem in K unknowns, for which a closed form analytical

solution cannot be found.

We further note that the optimization problem stated above assumes prior

knowleoge of the 0(k,.1. and Yj (i)'J . In practice, this is apt to be

unrealistic. One is unlikely to have exact prior knowledge of the amplitude

attenudtions ano detailed description of the signal waveshapes may be

similarly incomplete, in which case to obtain the KL estimate of the O4 )J

we must maximize the expression in (24) with respect to all the unknowns in

the problem. The effect of unknown attenuation factors can be eliminated from

the likelihood equation by observing that for pre-specified Pj "i , (23)

uecohmes a weighted linear least squares problem in the j , for which there

is a closed forn, solution. Thus, we can substitute the 04. 1. by their

weiynted least squares estimates and obtain a somewhat more complicated

functional to be maximizea with respect to the remaining unknowns. However,

te effect of unknown signal waveshapes cannot be eliminated that easily and

hence, the required maximation becomes exceedingly more complicated.

Hdvirg the EN method in mind, we would like to simplify the maximization

associated with the direct ML approach. To apply the algorithm to the problem

in hand, the first step is to specify the "complete" data. A natural choice

of the 'complete" data is given by decomposing the observed signals ',, (into

wrere the ?id/t) art chosen to be realizations from uncorrelated zero-mean

white Gaussian processes with spectral levels of AA iOV, If we require

that

K ~1fq/~)(26)
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then

K
Z XI'k-, W Itv /) (27)

Luncatenating the A4 equations in a vector form, we obtain

~ (28)
II

whe r

t in te (29)

arnd

I ) ( ,+) ).. / J "(30)

Equation (28) can be rewritten in the form

H _l -y( (31)
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whe re

~ ( '>'# YJ) ..- x~~ )(32)

whiert: I is thie MXMA identity matrix. We denote )'7H) the "complete" data,

and VIt~the 'incomnplete" (observed) data. Note that 'Wl is composed of the K

comiponlents YA /) I:;...C~ , where YOA!) is the vector signals received

f rowi tie K th source alone.

Lunsioier, for tile moment, M_ estimation using the 'comiplete" data.

Since the comiponents of Y1i'are uncorrelated Gaussian random processes, the

log-li~elihucoo of Yt is the sum over i and w of the log-likelihood of

tt Yiw) Which. iri turn, is given by

(0 It: ) - ~ (34)

Suppose that the .S,10 are known a-priori so that we Oonly" have to

estimate the K sets oi.~ (~ The maximization of (24)

with respect to all unknowns is a rather complex maximization problem. The

miaximization of (34), however, is a much simpler problem. This is since the

expression in (34) can be decomposed into
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where

0; F (36)

T e expression in (36) depends only on d) 04,lK,.d2).. AVm

Hence, the maximization of (34) with respect to the K-set unknowns can be

decomposea into the K separate maximizations

T.

[ , Wr

-. ,.: 
(37)

' " l '"k 2/" g, 5 /-;. A

d,

The maximization in (37) is, in fact, the maximization problem

associoteo with the WL estimation of the bearing parameter of a single source

in the presence of unknown amplitude attenuations.

The EK algorithm is directed at finding a value of the parameters that

maximize (24), however, it does so by making an essential use of the solution

to (37).

Since the "complete" data is Gaussian, and the transformation

relating Y '/j) to VIt) is linear, we can use the version of the

algurittva developed for the Linear-Gaussian case. Thus, the M-step of the

algorithm is given by (34) (since 9(±, p'') and (0yfy ( )

assumes the same form), where the components of Y1if)are substituted by

£Ff ()H B Y/Y 14):3 (38)
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The conditional expectation required in (38) can easily be obtained

usiqj (ib). The resulting algorithun is given by:

E-ste~p

Cuimipute

X /f):1

~ H 2 A (+4 /~t~)J(39)

M- step

For

6 1)op.(40)

Perhaps the must stricking feature of the algorithn has already been

indicateo before. The algorithm decouples the complex multiple-parameter

maximization associated with the direct L procedure into K separate M

maximizations as illustrated in Figure 2. The extension to bearing and range

estimation is straightforward. The basic scheme Is still illustrated by

Figure 2, where now each ML processor requires the maximization with respect

to a pair of bearing and rarge parameters. Thus, the complexity of the

algorithm is completely unaffected by the number of signal sources. As the

number of sources increases, we have to increase the number of tL processors

in parallel; however, each processor is maximized separately.
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Since the algorithii is based on the EM method, it must converge to the

exact Y4 estimate of all source location parameters simultaneously.

We note, in passing, that according to (26), the Pk? must satisfy the

constraint

-(41)

but otherwise they are free variables. The choice of Pi., does not affect the

final estimate (at the point of convergence); however, it can be used to

control the rate of convergence of the algorithm.

We now consider the M-step of the algorithm in more details. If we set

the aerivative of the expression in (40) equals to zero, we obtain

T'

T . -(42)

;,

Since tie second derivatives with respect to the 4," is a negative

aefinite matrix, we have therefore expressea the optimal choice of the WI, as

a function of i"h . Substituting (42) into (40) and following straightforward

algeora manipulations, the k-step of the algorithm reduces to

j 2

_ _ _ _ _ __-i,_(44)

W (44

T;I I I I I I
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I,, most situations of practical interest, we can assume that

J 7 S/t. ). Is independent of O1 , in which case the above pair

uf e4uatiuns reduces to

tAa y (45)
A- A- T, Y

- (46)7-
77,

TF
The ten, fvy 4I . (t-r)W/ can be generated by passing );'1l)

through a filter matched to f (A). Thus, tij is obtained by maximizing

d squarec ano weiglited sum of a bank match filter outputs.

Modified EP Algorithi.

Tue EY, theory allows us to substitute the N-step of the algorith

(Equation (40)) by the following two-step maximization:

P. f

"TT.

-~~~~ )ve ~ ==#i (VpI) '

/ S~y Z [ 2 , X '

"r7;.

-, 1 0 (48)

77-
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Assuming, as before, that JY -.i- ij)dt is independent of 61, (47)
7T,

ano (46) reouce 
to

A4) Tf

> (49) :'
f

/ T ' X'h./t) f ",, e ' L(
I7'jL~~?7T I Ij

We nute that the solution to (49) is obtained by maximizing a weighted

linear sum of a bank match filter outputs.

Tne waximization of (47) followed by the maximization of (48) is

generally not equivalent to the maximization required in (40). However, since

the condition in (9) is still satisfied, each iteration increases tie

likelihood, and the modified algorithmu converges to the desired results. By

replacing (4) by (49) , we therefore simplify processor

structure ano computations in the expense of possibly very moderdte decrease

in the rate of convergence of the algorithm.

Another alternative is to maximize the expression in (40) first with

respect to the di, (using i&, ) and then with respect to . The H-step of

the algorithm, In that case, is given by

(51)
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(Tf-
Pay I wit" Stp-q,, ) ==:0 (52)

.° T,

We note that (49) followed by (50) is not the same as (51) followed by

(bk). However, for the same reason, both algorithms converge to the desired

ML solution.

Unkiiuwn Signal 6aveforms

The algorithm and its modified version developed in the previous

sections critically depends on exact prior knowledge of the S, (t). In

practice, one is unlikely to have detailed prior knowledge of the signal

waveforms , in which case they must be estimated jointly with the &' and

tne k&,,. Following the same considerations as in the known signal case,

the resulting algorithm is given by

E-step

Compute

t- step

For 2:1,2, .- -

.Ti•of 1) • , , ' I
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Again, the EM algorithm converts the extremely complicated maximization

problem associated with the direct ML procedure into K separate maximizations

as suggested by Figure 2. Each maximization is, in fact, the maximization

problenm associated with the W estimation of the bearing parameter of a single

source of unknown waveshape in the presence of unknown amplitude attenuations.

Ignoring end-effects, the expression in (54) to be maximized can be

written in the form
Tf

W (55)

To find a function f(j7) that maximizes the integral given in (55), it

is sufficient to find z(t)that maximizes the Integrand. If we set the

derivative of the integrand with respect to Sk () equals to zero, we obtain

after some obvious manipulations

I (i) _______ _ (56)

Since the second derivative of the integrand with respect to .5"4) is

negative, we have found the optimal choice of 51f), expressed in terms of the

remaining unknowns in the problem. Substituting (56) into (54), the required

maximization can be carried out as following:
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-I (-/ / 414'eT,

f 1 j(7)-'-

)A' (58)

We note that at convergence, equation (58) yields the ML estimate of

tile 5, ti) as well. This information is of considerable interest in many

applications.

The maximization required in (57) is still rather complicated. However,

the modifiec EM approach can be used to further simplify the computations by

mIxinizin (D4) first with respect to Qj , then with respect to S~tf), and

finally with respect to the J . The M-step of the algorithm, in that case,

taKes the form:

TS

0/1 '  W119Mr (60)

7Tf

") . - " _,

e (61)If 1)'Z," ) I;/
"lrA

-- ~~~ .
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In this setting we only have to perform a one-parameter maximization at

eacr, iteration cycle. The expression in (59), to be maximized, can be

rewritten in the form:

W. I: 14w Ali? e .fyYW1~e ' )e~T4

[ 2- "' W )6
T1 ,41

/2

T,.~

- -(~,)r$~(62)

w nere c , is the Fourier transform of Xit) and W is the signal

frequency band. The expression in (62) is the array beamformer, implemented

in either tne tinte or the frequency oomain. Thus, the M-step of the algorithm

essentially consists of maximizing K beamformers in parallel as illustrated in

Figure a.

Alterisatives to the K-step can be obtained by changing the order of

maximizations. For example, we can apply the various algorithms derived for

the &nuwn sivjnal case, wher Sj /t) is substituted by its current

estimate (v), and then use (60) to update the estimate of Sk (t) The

variuus .lyurithms uiay have slightly different convergence properties;

however, all of which converge to the exact K. estimate of all source location

parameters simultaneously.
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COMJ4ENTS

1) TVe extension of the algorithms to bearing and range estimation and

arbitrary (out known) array configurations is straightforward. 2) The

derivation of tne algorithms for the case in which the S(&t) are modelled

as sample functions from uncorrelated zero-mean Gaussian random processes is

preserted in [25]. 4) In the assumed model, we have ignored the phase shifts

caused by scattering and reflection phenomena. These effects can be taken

intu dccout by considering the . (t) in (20) to be the complex envelope of

the receiveo signals, in which case the < are complex-valued (magnitude

dnd phase) aiplitude attenuations. The extension of the algorithms to the

complex case is straightforward (note that the Linear-Gaussian case has been

developed for complex processes as well). 4) The proposed scheme can be

extended to time delay and location estimation in multipath environment.



-23

ACKNOWLEDGEMENTS

This study has been supported by The Naval Air Systems Conmand under

contract NuuU14-8b-K-0272. The authors wish to thank Ms. Cindy Leonard for

her excellent secretarial assistance.



- 24 -

IEFERENCES

LIJ A.P. Delpster, N.M. Laird, and D.E. Rubin (1977): "Maximum Likelihood
from Incomplete Data via the EM Algorithm," Ann. of the Royal Stat. Soc.,
pp. 1-36.

LZj W.J. banys and P.M. Schultheiss (1973): "Space-Time Processing for
Optimal Parameter Estimation," in Signal Processing, J.W.R. Griffiths,
P.L. Stucklin, and C. Van Schooneveld, Eds. New York: Academic, pp.
577-590.

Lj W.k. Hahn (1975): "Optimum Signal Processing for Passive Sonar Range and
Bearing Estimation," J. Acoust. Soc. Amer., Vol. 58, pp. 201-207.

L4j Burgiotti, G.V. and Kaplan, L.J. (1979): "Superresolution of
Uncorrelated Interference Sources by Using Adaptive Array Techniques,"
IEEE Trans. on Antennas and Propagation, Vol. 27, pp. 842-845.

LbJ Cantoni, A. and Godara, L.C. (1980): "Resolving the Directions of the
Suurces in a Correlated Field Incidenting on an Array," Journal of
Acoustical Society of America, Vol. 67, pp. 1247-1255.

Luj oe Figueiredo, R.J.P. and Gerber, A (1983): "Seperation of Superimposed
Signals oy Cross-Correlation Method," IEEE Trans. on Acoustics, Speech
and Signal Processing, Vol. 31, pp. 1084-1089.

L7 j Nehorai, A., Su, G. and Morf, M. (1983): "Estimation of Time Difference
of Arrival for Multiple ARA Sources by Pole Decomposition," IEEE Trans.
on Acoustics, Speech and Signal Processing, Vol. 31, pp. 1478-1491.

loj Paulraj, A. and Kailath, T. (1985): "Direction of Arrival Estimation by
Eigenstructure With Unknown Sensor gain and Phase," Proc. IEEE Int. Conf.
or Acoustics, Speech and Signal Processing, (Tampa, FL).

191 Porat, B. and Friedlander, B. (1983): "Estimation of Spatial and
Spectral Parameters of Multiple Sources," IEEE Trans. on Information
Theory, Vol. 29, pp. 412-425.

L10i Readi, S.S. (1979): "Multiple Source Location - A digital Approach,"
IEEE Trans. on Arespace and Electronic Systems, Vol, 15, pp. 95-105.

LiIj Sctuiidt, R.O. (1981): "A Signal Subspace Approach to Multiple Emitter
Location and Spectral Estimation," Ph.D. dissertation, Stanford
University, CA.

12iJ Sclunidt, R.O. and Frank, R.E. (1983): "Multiple Source DF Signal
Processing: An Experimental System," Proc. Symposium on Antennas
Applications, (Montecello, IL).

Ll3j Scnweppe, F.C. (1968): "Sensor Array Data Processing for Multiple Signal
Sources," IEEE Trans. on Information Theory, Vol. 14, pp. 294-305.



- 25 -

[1 4 j Su, G. and Morf, M. (1982): "The Signal Subspace Approach for Multiple
Emitter Location," Proc. 16th Asilomar Conf. on Circ. Syst. and
Conjuters, (Pacific Grove, CA), pp. 336-340.

L16J Su, 6. and Morf, M. (1983): "The Signal Subspace Approach for Multiple
Wideband Emitter Location," IEEE Trans. on Acoustics, Speech and Signal
Processing, Vol. 31, pp. 1503-1522.

L16j Wang, H. and Kaveh, M. (1984): "Estimation of Angles-of-Arrival for
Wiueband Sources," Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (San Diego, CA), pp. 7.5.1-7.5.3.

Ll7j Wax, H. and Kailath, T. (1983a): "Optimum Localization of Multiple
Sources by Passive Arrays," IEEE Trans. on Acoustics, Speech and Signal
Processing, Vol. 31, pp. 1210-1218.

LIEJ Wax, M. (1985): "Detection and Estimation of Superimposed Signals,"
Ph.D. dissertation, Stanford University, CA.

Ll9j Wax, M. and Kailath, T. (1984b): "Decentralized Processing in Passive
Arrdys," Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, (San Diego, CA), pp. 40.7.1-40.7.4.

LkOj Wax, ri., Shan, T-J. and Kailath, T. (1982): "Location and Spectral
Density Estimation of Multiple Sources," Proc. 16th Asilomar Conf. on
Circ. Syst. and Computers, (Pacific Grove, Ca), pp. 322-326.

L2Ij Wax, M. and Kailath, T. (1983b): "Estimating the Number of Signals by
Information Theoretic Criteria," ASSP Spectral Estimation Workshop II,
(rampa, FL), pp. 192-196.

L 2 j Wax, M. and Kailath, T. (1964a): "Determining the Number of Signals by
Inforwiation Theoretic Criteria," Proc. IEEE Int. Conf. on Acoustics,
Speecr, ana Signal Processing, (San Diego, CA), pp. 6.3.1-6.3.4.

L23j LelD, A. (1974): Applied Optimal Estimation, Cambridge: M.I.T. Press.

L24j H.L. Van Trees (1968): Detection, Estimation and Modulation Theory,
Part 1, New York: Wiley.

LZoj Feder, H. and Weinstein, E. (1985): "Optimal Multiple Source Location
Estimation Via the EM Algorithm," Proc. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing, (Tampa, FL) pp. 1762-1765.



- 26 -

FIGURE CAPTIONS

Figure 1 Array-Source Geometry

Figure 2 Multiple Source Localization via the EM Algorithm

Figure 3 Localization of Multiple Sources Having Unknown
Wavef orms
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